Accelerating the Energy Transition: **Dynamic Line Ratings for an Optimized Grid**

14th January 2021

Welcome & Introduction by Alex Houghtaling, Vice President, LineVision The current status of DLR by Frederic Vassort, Board Vice-Chair of currENT and CEO, Ampacimon

- Uroš Salobir, ENTSO-E. DLR technology maturity and importance of adoption to achieve Green Deal targets.
- Mathieu Fontaine, Project Manager of DLR at RTE will describe DLR application for wind integration.
- **Balint Nemeth**, Head of High Voltage Laboratory at Budapest University of Technology and Economics. How DLR is used to release cross-border trade capacity to meet the 70% rule.
- Janko Kosmač, Head of process system department from ELES. How DLR is integrated into the SCASDA/EMS and used in power system operation.
- Victor Le Maire, Belgian Transmission Grid National Control Centre. Financial outcomes of reduced congestion.
- Georgios Papaefthymiou, Senior Expert Power System Development and Operation at 50hertz/EGI, will present the incorporation of DLR information in grid planning processes at 50hertz.

Previous WEBINARS

- Accelerating the Energy Transition:
 Optimized Power Grids for a Clean and Green Future (October)
- 2
- Accelerating the Energy Transition: The Role that Direct Current (DC) Grids can Play (December)

Introduction to currENT

Our vision is a European power network that is the recognised world leader in enabling decarbonisation through the efficient use of modern grid technology.

Uroš Salobir

Vice Chairman, RDIC at ENTSO-E

Mathieu Fontaine

Project Manager of DLR at RTE

Current and Ampacity for a line which allows to evacuate wind power generation only

Balint Nemeth

Head of High Voltage Laboratory at Budapest University of Technology and Economics

Budapest University of Technology and Economics

Education Laboratory testing Research & Development

DLR to release cross-border trade capacity to meet the 70% rule.

Accelerating the Energy Transition: Dynamic Line Ratings for an Optimised Grid

Bálint NÉMETH PhD

nemeth.balint@vet.bme.hu

Head of High Voltage Laboratory at BME

1/13/2021

Cross-border benefits of Dynamic Line Rating

Dynamic Line Rating advantages:

- Real-time monitoring of the OHL
- Increased system stability

1/13/2021

Increased transfer capacity up to 20-30 % in the 95 % of the time

Cross-border benefits:

- Increasing export-import transport solve bottlenecks
- · Lower energy prices Higher social welfare
- · Less redispatching
- Integration of more renewable energy sources
- · Increased energy security (export)
- More resilient system
- Faster Market coupling Internal Energy Market

FARCROSS Project

2019-2023, (Horizon 2020, EU)

- WP5 DRL-H DEMO: Complex grid management technology for handling cross-border transmission line capacityrelated issues
- 4 location: Austria, Hungary, Croatia, Greece
- 6 TSOs, 8 chosen OHL (4 cross-border) is equipped with 3 type of sensors (IMOTOL, LineVision, OTLM) and weather station
- Unified sensor tests
- Comparison of the sensor measurements
- Complex grid management model

Budapest University of Technology and Economics

Education Laboratory testing Research & Development

Thank you for your attention!

Bálint NÉMETH PhD

nemeth.balint@vet.bme.hu

Head of High Voltage Laboratory at BME

1/13/2021

Janko Kosmač

Head of Process System Department, ELES

DLR Integration with SCADA/EMS and Use in Power System Operation

dr. Janko Kosmač

Brief ELES' DLR system introduction

- I. DLR is part of Dynamic Rating System SUMO
- II. our DLR uses indirect method (weather data)
- III. DLR is performed for all spans of the line
- IV. in use since 2016 for 31 power lines (8 × 400 kV, 7 × 220 kV, 16 × 110 kV)

Why DLR must be integrated in SCADA/EMS?

- SCADA/EMS is foremost important operators' tool as it is the main interface to the power system
- current carrying capacity is one of the essential information of the element and represents a corner stone of transmission system
- changing the corner stone is delicate job and should be performed with great care

Basic structure of DLR system

Integration concept and the operational limt

Integration with SCADA/EMS

• Winter day (9th January 2021)

Conductor temperature measurements

Use of temperature measurements:

- I. conductor temperatures are integrated in SCADA/EMS and used in alarming
- II. evaluation of DLR algorithm quality (needs weather station)
- III. evaluation of weather estimation and forecast module performance

Temperatura na 220 kV DV										
DV	SM	Temperatura vodnika [°C1								
	089	-4,6	/	-3,2						
	111	-0,7	-1,0	-2,4						
	116	-0,3	/	-1,7						

Thank you for your attention!

janko.kosmac@eles.si

Victor Le Maire

Belgian Transmission Grid National Control Centre

DLR (Ampacimon) in operation at Elia Financial outcomes of reduced congestion

Victor le Maire

495,5 495,5

533,8 495,5

98,9 54,2

Ampacimon - Dynamic Line Ratings						DASHB		150/70		0	380/220	BeRe	ady		
	Reference	Measured	Limit	Limit 1h	Lim	imit 15min Se Capped A		/ice			Reference		Measured	Limit	Limit 1h
		Flows RT	Season	Capped	Ca			ail					Flows RT	Season	Capped
		[MVA]	[MVA]	[ΜνΑ]		MVAJ	LOIM	OFFJ	_				[MVA]	[MVA]	[ΜνΑ]
150 kV	BRUGG 150.05 EEKLO	58,9	173,6	225,7							GRAMM 380.10	<u>ACHEN</u>	38,0	1473,9	1916,1
	LANGE 150.05 EEKLO	77,8	173,6	225,7							GRAMM 380.11	LIXHE	381,7	1473,9	1773,1
	BRUGG 150.06 EEKLO	59,1	173,6	225,7							GRAMM 380.12	ZUTE+	327,6	1473,9	1916,1
	LANGE 150.06 EEKLO	78,1	173,6	225,7			1				ACHEN 380.19 L	ONNY	56,2	1474,3	1847,0
	LANGE 150.07 NIEUW	140,3	246,4	320,3			1			3	VANYK 380.23 M	<u>4EERH</u>	33,1	1611,3	1901,0
	LANGE 150.08 NIEUW	137,1	246,4	320,3			1			8	DOEL 380.25 ZA	<u>NDV</u>	405,1	1312,1	1581,5
	SLYKE 150.15 BRUGG	33,5	174,7	227,1						ķ	DOEL 380.26 ZA	NDV	380,9	1312,1	1581,5
	SLYKE 150.16 BRUGG	33,7	174,7	227,1						v	VANYK 380.27 M	1AASB	38,6	1611,3	1611,3
	BAUDO 150.313 CHIEV	26,4	196,0	208,7			l				VANYK 380.28 M	1AASB	102,3	1474,3	1548,7
	BAUDO 150.314 CHIEV	26,6	196,0	208,3			l				ZANDV 380.29 F	RILND	524,1	1842,4	2287,8
7 0	MOUSC 70. 49 TOURS	9,4	70,6	82,5		8,6	l				ZANDV 380.30 F	RILND	47,4	1842,4	2287,3
	TOURN 70. 49	8,5	70,6	85,1			l				COURC 380.31 9	<u>STAM+</u>	170,6	1473,9	1572,2
	LEUZE 70. 119	13,4	48,7	57,4			I				GRAMM 380.31	<u>STAM+</u>	360,4	1473,9	1916,1
											AVLGM 380.79 N	<u>IASTA</u>	91,9	1474,3	1575,7
											AVLGM 380.80 A	AVELI	144,6	1711,6	1788,0
											VANYK 380.91 L	IXHE	27,3	1474,3	1552,4

2 2 0

Journey from Pilot to Business-as-usual

the 0 familiar with 0 U chi Getting

- ≥ 2008: Prototype test • Development of 1h forecast values to improve usability
- 2011: Coastal area with congestions due to wind infeed
 - SCADA integration complete

2014: Roll-out on a dozen lines to improve crossborder import capacity

• Within 3 months (construction, placement, calibration, SCADA integration)

So 2015: Development of for use

Se Forecast DLR

specifications

Refine

- Crucial for market coupling (Flowbased)
 - Subjected to regulator approval

2016: Automate DLR integration into CACM and CSA processes

- Dynamic rating automatically implemented in IGMs* files
 - About 6% gain on average in market coupling capacities
- Capping rule to reach 99.9% confidence w.r.t. "Forecast 1h"

2017: Second roll-out wave

usual

as

Business

• Lines equipped to ease HTLS works (very long outages without restitution times)

2018: Mobility of modules

- Modules are dismounted and replaced elsewhere
- Licenses could be transferred at low costs from one line to another

2019: Integrated into regulatory planning period

• Driving business case for DLR as a temporarily solution for grid congestions

- TSO's standards and risk aversion required 6 years latency from prototype to industrialization
- Tailored-made hardware and software

- First time a TSO is implementing DLR in market data
- High confidence level implemented

- Completely accepted/trusted technology (operation, processes, procedures etc.)
- Installed wherever valuable and technically feasible

Purple

Blue

Red

Financial outcomes of reduced congestion

- Internal redispatching = costly measures (typically ~40€/MWh)
 - → Installation of DLR in 150kV coastal area was clearly beneficial
 - \rightarrow Sometimes the compensation bid is not available in BE

e l i a

- International redispatching = very expensive measures (higher volumes & prices)
 - → Installation of DLR in 380kV interconnections was clearly beneficial
 - → Ampacimon investments are paid pack with only a few days/year of avoided redispatching

Avoided costs between 8.06 and 11.09.2020

Estimated flows on 380.101 after loss of 380.10 between 8.06.2020 and 11.09.2020

Long outage of 380.102 between Horta – Alvgm, lot of pressure on remaining line in case of export to France

- \rightarrow Loss of 380.10 (tie-line with FR) = ~33% of flow reported on 380.101
- → ~150h with overloads while several remedial actions already applied (sometimes even redispatching and counter-trading)
- → Ampacimon was clearly a game-changer during this period while similar outages are ongoing since 4 years in HORTA substation

ANNEX: Impact of DLR on flow-based capacity allocation: leverage effect

Simple example:

 $S \rightarrow N$ flows and not a single extra MW can be transferred from FR to BE without causing an overload in the Security Analysis

Increasing the ampacity of the limiting element by 50MW will probably increase the FR \rightarrow BE capacity by much more thanks to extra MW going through the other tie-lines

- → Giving a few extra ampacity on critical lines increases significantly the FB domain through this leverage effect
- → But giving a few extra ampacity while in RT the margin happens to be NOT available requires significant measures to solve the problem through the same leverage effect

ANNEX: Impact of DLR on flow based (capacity allocation)

Georgios Papaefthymiou

Expert Power System Development and Operation at 50hertz/EGI

Accelerating the Energy Transition: Dynamic Line Ratings for an Optimised Grid

Incorporation of DLR information in grid planning processes at 50hertz

14-01-2021 | Dr. Georgios Papaefthymiou Elia Grid International – A subsidiary of the Elia Group

"NORE-principle": Network Optimisation before Reinforcement and Expansion ('new copper')

Robustness analysis: can line investments be postponed through line monitoring?

currENT Webinar 14.01.2021 33

Robustness analysis: mapping the flow vs ampacity behaviour of each line (illustratory example)

Traditional

Incorporation of DLR information

Dynamic line rating is a central optimisation option but impacts of increased line loading should be carefully assessed

- Dynamic Line Rating should be incorporated in the assessment of the robustness of future grid investments
- Highly data intensive and complex modeling process: asset information, power flow information, weather conditions on high time and geographic granularity (asset level)
- **System impacts should be carefully analyzed** to prepare for increased line loading, e.g. line losses, static/dynamic reactive power demand, transient stability, etc.
- Asset impacts should be carefully considered: are assets ready for higher loading?

Thank you very much!

Contact

Elia Grid International Dr. Georgios Papaefthymiou Senior Expert Power System Development & Operation georgios.papaefthymiou@eliagrid-int.com

UPCOMING WEBINAR

- 4
- Accelerating the Energy Transition: Cyber security (Q1)

The escalating complexity of our electricity grid – more intermittency, more devices, more software, more and faster ways that supply and demand interact

The benefits of innovation, including undreamed of optimization opportunities from big data, machine learning, software as a service, and the power to control a wide range of far-flung devices and systems,

The challenges, including more intermittency and less inertia from generation, more complex interaction between supply and demand, interoperability, and the central issue of maintaining utility operations that are secure from cybersecurity threats, and

Real-world experiences by utilities in addressing cybersecurity while meeting the coming challenges. Digitalization of our electricity grid is coming, and the focus of the webinar will be on the resulting cybersecurity challenges.

Thank you for your attendance

To keep up to date with our activities:

info@currenteurope.eu

https://www.linkedin.com/ company/current-europe/

@CurrentEurope

www.currenteurope.eu

