A Grid to Decarbonise Europe

Conference presented by: currENT SuperNode Ltd University of Strathclyde KU Leuven

SUPERNOODE

SUPERNOODE

SUPERNODE[™]

A GRID TO DECARBONISE EUROPE

INTRODUCTION

- 1. Secure, Sustainable and Affordable energy is really important to maintain our Wellbeing!
- 2. We have enjoyed this for the best part of 100 years, but the system only runs with fossil fuel (carbon) and we have a Global Climate Crisis!
- ✓ Game-changing 2050 Climate Policy and Targets adopted.
- ✓ Electrification is the major driver in combating Climate Change.
 - PtG used where electrification is not practicable
- ✓ Generation technology is fit for purpose.
- X Grids are the enabling backbone of our Energy future and the most significant challenge and constraint.

WORKING BACKWARDS FROM THE TRANSFORMATIONAL GOAL OF DECARBONISATION

Rather than just incrementing forwards to somewhere – work backwards from the goal and vision we share!

What does a System that can operate without Carbon look like?

What changes do non-fossil generation impose on 2050 Grid design?

How big is the Grid / how much Connectivity is needed?

What is the optimal circuit size?

Is current grid technology adequate?

TECHNOLOGY AGNOSTIC NETWORK MODEL TO KEEP THE LIGHTS ON WITHOUT CARBON

SETUP AND ASSUMPTIONS

- Network analysis is **Technology Agnostic**.
- Nodes have geographical locations and reflect national RES targets and demand.
- Each node is limited in size and connected by at least 2 power corridors.
- **O LSI of 3GW** for the continent and **2GW** for Ireland, UK and Scandinavia.
- O Max circuit size is limited to 12GW
- In a contingency event adjacent circuits will operate with additional capacity
- Existing Transfer Capacity between nodes is not modelled so within country corridor capacity and to a much lesser extent international corridor capacity requirements may be overstated.
- Model assumes no interconnection outside of Europe.

The 2050 RELAY Network Model

Objective:

Create an indicative pan-European network based on carbon free energy.

Energy scenario*:

Solar: 1,102GW Offshore Wind: 740GW Onshore Wind: 450GW Total RES: c. 2,500GW

No. of Nodes: 103

No. of Corridors: 198

*Energy scenario used in line with ENTSO-E's TYNDP and Commission 1.5Tech - / Demand based on ENTSO-E weather data is 2019

METHODOLOGY

- 1. Ensured generation adequacy, including storage to support generation/demand deficit.
- 2. Developed heuristic initial network corridors.
- 3. Used modified max flow algorithm to size corridors and ensure the network supports internodal flows 95% of the time.
- 4. Identified the 8 most demanding hours for grid transfers.
- 5. Conducted contingency analysis on these 8 hours for all corridors, with reducing circuit sizes, to maintain stability.
- 6. Calculated the circuit sizes for corridors across the network.

CASE 1: BG-RO2 (STABILITY CRITERION NOT MET)

8

CASE 2: BG-RO2 (STABILITY CRITERION MET)

CIRCUIT SIZING: SINGLE CORRIDOR

Corridor: ('BG', 'RO2'), Original Capacity: 30.00 GW

CIRCUIT SIZE (GW)	N-1 CAPACITY (GW)	ADJUSTED N-1 CAPACITY (GW)	REAL CAPACITY LOSS IN THE CORRIDOR (GW)	ACTIVE LOSS IN THE NETWORK (GW)
1 * 30	0	0	30	26.9
2 * 15	15	16.5	13.5	12.4
3 * 10	20	22	8	6.9
4 * 7.5	22.5	24.75	5.25	4.2
5 * 6	24	26.4	3.6	2.5
6 * 5	25	27.5	2.5	

Objective: Determine maximum circuit size for stability within an acceptable loss threshold

Example: 6GW circuit size meets < 3 GW criterion

Process:

- Identify Potential Circuit Sizes: Calculate corridor capacity divisors for potential circuit sizes
- Adjust Capacity: Subtract circuit sizes from corridor original capacity, then apply +10% adjustment
- Evaluate Impact: Compare network flow with normal operations to calculate active loss until circuit size is found

CIRCUIT SIZE ANALYSIS: FULL NETWORK

Objective: Identify optimal circuit sizes across all corridors and extreme demand hours.

Process Overview:

- 1. All Corridors, Single Hour: Extended single-corridor analysis to all corridors for a specific hour
- 2. All Corridors, Extreme Demand Hours: Conducted circuit size analysis for all corridors across eight extreme demand hours
- 3. Optimal Circuit Size Determination: For each corridor, identify the circuit size that maintains stability across all extreme hours

Table below showcases average circuit size by geographical region and for the entire network, including ranges

	AVERAGE CIRCUIT SIZE	MIN CIRCUIT SIZE	MAX CIRCUIT SIZE
Western Europe	6.5 GW	2 GW	12 GW
Scandinavia	4.5 GW	2 GW	12 GW
Eastern Europe	5.5 GW	2 GW	12 GW
Northern Europe	6 GW	2 GW	12 GW
Southern Europe	5 GW	2 GW	12 GW
Offshore	7 GW	2 GW	12 GW
NETWORK AVERAGE	6 GW		

CIRCUIT KILOMETRES ANALYSIS – INDIVIDUAL CORRIDOR

Corridor	Distance (km)	Capacity (GW)	GW.km
Romania 2, Hungary	262	12	3,143

Technology Capacity	No. Circuits	Circuit-Kilometres
2 GW	6	1,572
4 GW	3	786
6 GW	2	524

CIRCUIT KILOMETRES ANALYSIS – FULL NETWORK

Total Network Size		
Corridor km	GW.km	
~99,000	~1,900,000	

Total Circuit-Kilometres			
Transfer Capacity	Circuit km	# Circuits/ROW	
2 GW	~950,000	~3,500	
4 GW	~475,000	~1,750	
6 GW	~300,000	~1,100	
8 GW	~250,000	~875	

1,000,000 3,500 900,000 3,000 800,000 700,000 2,500 600,000 2,000 500,000 1,500 400,000 300,000 1,000 200,000 500 100,000 **Circuit kilometres** No. of Circuits

Transfer Capacity

■8GW ■6GW ■4GW ■2GW

CONCLUSIONS

- An average Circuit Size of 6GW minimises Circuit KMs and satisfies N-1 criteria
- We need ~1,900,000 GWKMs of Transfer Capacity to keep the lights on without carbon.
- The cost and quantum of materials for infrastructure can be reduced substantially with an appropriate Circuit Size commensurate to the targets we have set ourselves.
- There is a significant gap between what we have and what we need from Transmission.

Innovation is Needed!!

THANK YOU

DC OVERLAY GRID PROJECT OVERVIEW

PROJECT INTRODUCTION

Overview

• Collaborative research & modelling project with KU Leuven, University of Strathclyde & SuperNode.

Objective:

• Demonstrate the **first ever** feasible approach to the architecture, operation and control of a continental-scale DC Overlay Grid.

METHODOLOGY

OPTIMAL POWER FLOW MODELS (OPF)

- OPF is an algorithm developed by KUL for AC/DC grids.
- OPF model calculates optimised settings for generators, converters, and power flow in AC/DC branches.
- Circuits defined set for balanced transmission across the time series.
- Continuous OPF iterations guide the control system on corrective actions during unexpected events through Control levels.

SUPER

GRID ARCHITECTURE

- Mixed Generation & demand capacities for each zone.
- Six market zones defined for AC layer.
- Meshed DC layer directly reflecting AC architecture.
- Interlayer power transfers through high-capacity HVDC power converters.
- Interzonal power exchanges governed by OPF.

Blue Line = DC Link Black Line = AC Link

Z = Converter Station **E** = Generation

= Demand

MULTI-LAYER CONTROL STRATEGY

OPF establishes grid parameters and optimal power flow setpoints

Distributed local controller to take immediate contingency action through DC Voltage & AC frequency control

CONTINGENCY SCENARIOS

• All Scenarios are tested for the timestep with the highest ratio of total demand to RES generation

- 4. Loss of large AC generator
- 5. Loss of converters on PtP interconnectors
- PSCAD models used to investigate full system response through Contingencies

PRE-CONTINGENCY STABLE SYSTEM

Z = Converter Station **E** = Generation **E** = Demand

- AC and DC power flows before contingency scenarios as calculated through the OPF.
- High AC generation in Zone 3.
- DC Zone 3 Converters are the master DC voltage controlling stations.
- The converters at other DC zones directly control active power.
- O Demonstrates optimal operation & stability

SCENARIO 1- LOSS OF CONVERTER ON DC GRID

🔀 = Converter Station 🛛 🛲 🖳 = Generation 🛛 🔚 = Demand

SCENARIO:

• A master DC converter in DC zone 3 is faulted, resulting in a transient loss of 3 GW power.

RESPONSE:

- Local Control layer response.
- Zone 3 converters have spare capacity
- The remaining healthy converters in DC Zone 3 compensate the lost 3 GW.
- The rest of the system is unaffected, and the overall power flow remains unchanged.
- No further action is required for this scenario.

The loss of master MMCs in the DC voltage control will not affect overall system stability.

SCENARIO 2: FAULT DC LINE ON MESHED DC GRID:

SCENARIO:

• Fault on DC overlay grid line transmitting 4GW from DC zone 3 to 4.

IMMEDIATE RESPONSE:

• Selective protection: Fast acting DCCBs immediately isolate fault & DC line.

SUPER

SCENARIO 2: FAULT DC LINE ON MESHED DC GRID

LOCAL RESPONSE:

- The active power carried by the faulty DC line is automatically / immediately redistributed among other DC lines.
- The AC lines and ptp HVDC systems in the AC grid remain unchanged as well as the active power transmitted from the DC grid to the AC grid.
- DC lines between zone 3 & 5 and between zone 6 & 5 are temporarily overloaded.

OUTCOME:

- Redistribution of 4GW active power through meshed DC grid is automatic.
- Power transmission through converters are unaffected (i.e. no converter overloading).

SCENARIO 2: SECONDARY RESPONSE TO OVERLOADED DC LINES

SECONDARY RESPONSE:

• OPF calculation to determine optimised power flows for the system (Secondary Control)

OUTCOME:

- All transmission capacities out from AC Zone 3 (both AC and DC) are fully utilized.
- To avoid overloading the lines, generation at AC zone 3 is reduced, while generation at AC zone 5 is increased.
- Less power needs to be transmitted from AC Zone 3 to the other zones.
- The DC overlay converter power setpoints are changed accordingly in accordance with the new OPF data.

System stability has been maintained

CONCLUSION

- Demonstrated first ever feasible approach to the development, operation, protection & control of a continental-scale DC Overlay grid.
- Control Strategy enacted through the OPF model was effective, demonstrating;
 - Balanced power flow control in normal operation
 - System stability maintained in all contingency scenarios
 - Controllability of high-capacity DC grid with high volume power converter based-resources.
- Demonstrated that increased RES generation and transmission capacity can be achieved through increased system flexibility enabled by a meshed DC Overlay grid.

SUPERNODE[™]

NEXT GENERATION SUPERCONDUCTING CABLES

SUPERNOODE

SUPERNOODE

NEXT STEP FOR TRANSMISSION - HIGH-CAPACITY MESHED GRIDS

Relay Project: ~ 6GW power circuits

DC Overlay Grid

What transmission technologies can deliver a decarbonised grid?

TECHNOLOGY OVERVIEW

OVERHEAD LINES

• Not consentable in europe at scale

AC TRANSMISSION CABLES

• Not technically capable of long-distance bulk power transfer

TECHNOLOGY OVERVIEW – DC UNDERGROUND TRANSMISSION

CONVENTIONAL CABLES

• Capacity constrained, cost challenged with higher voltages

SUPERCONDUCTING CABLES

 Next generation Superconducting cables can deliver the capacity, scale & cost profile required

5

SUPERCONDUCTING POWER CABLES

WHAT IS SUPERCONDUCTIVITY?

Superconductivity occurs in some materials, when cooled below a certain temperature, display unique characteristics:

- Zero electrical resistance
- High power density

How to achieve superconductivity:

- A material must be cooled to below its '*critical temperature*'.
- High temperature superconductors (HTS) are superconductive around -200°c.

SUPERCONDUCTING CABLES IN PRACTICE

Recent Superconductor Projects				
2013		Ampacity, Essen	1km, 40MVA, 10kV, AC	 Innovative solution to ease urban congestion Operated successfully at -200°C for 7 years
2018	Best Paths	EU Horizon's 'Best Paths' Project	30m, 3.2GW, 320kV, DC	 High power density transmission level demonstration project
2019		Shingal, Seoul	1km, 50MVA, 23kV, AC	- Best strategic solution to ease urban congestion
2021	amsc	REG, Chicago	62MVA, 12kV, AC	- Best strategic solution for ringmain resilience
2023	We connect a greener world	Superlink, Munich	12km, 500MVA, 110kV, AC	 Customer-driven by SWMunich 3x power with no disruption
				SUPERNIÉOE
	Nexans Cab	le, Ampacity 2013		Next Generation Superconducting cable

7

SUPERNOL

DE™
ADVANTAGES OF SUPERCONDUCTING TRANSMISSION

MATERIAL COMPARISON

FOR 2GW EQUIVALENT POWER TRANSMISSION

- Superconducting cable is **57%** lighter than a conventional cable
- 19% of superconducting cable is copper vs 68% of a conventional cable

SCALABILITY: COPPER COMPARISON

6GW corridor:

- Lower Voltage & higher power density
- Smaller Rights-of-Way
- Reduced environmental footprint
- Faster consenting & project delivery

125m +/- 800kV HVDC 4 GW Capacity 1-2m

Superconducting cable

4 GW Capacity (1 bi-pole = 2 cables) 19 - 25m

XLPE Copper Cable

4 GW Capacity (2 bi-pole = 4 cables)

MESHED GRID INTEGRATION ADVANTAGES - PROTECTION

5414

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 37, NO. 6, DECEMBER 2022

- Superconducting transmission cables can be designed as fault tolerant
- Inherent current limiting capability can provide "firewalls" around the DC fault, preventing grid propagation around meshed system
- Opportunity to use **cheaper DCCB technology** and ratings as Superconducting cables limit faults

Fault Transient Study of a Meshed DC Grid With High-Temperature Superconducting DC Cables

Wang Xiang¹⁹, Member, IEEE, Weijia Yuan¹⁹, Senior Member, IEEE, Lie Xu¹⁹, Senior Member, IEEE, Eoin Hodge, John Fitzgerald, and Paul McKeever¹⁹

NEXT GENERATION SUPERCONDUCTORS

13

SUPERNODE'S NEXT GENERATION SUPERCONDUCTING CABLES

SuperNode Next Gen Cable Technology:

- Scaled Capacity for bulk power transmission
- Scaled **Transmission distance** enabling remote RES connection.
- Scaled for Volume Manufacturing to eliminate cost.
- TRL 6 qualification will be achieved in 2025.

PATH TO COMMERCIALISATION

15

CONCLUSIONS

- High-capacity highly-meshed grids are required to deliver x9 more renewables.
- DC technologies required for bulk power, long distance transmission scale.
- Technology gap exists in DC transmission.
- Superconducting cables can deliver the scale, speed and efficiency required to decarbonise.

Optimal Steps to a Decarbonised Grid High-Capacity Meshed Grids

Superconducting cables

DC technology

ENTSO-E's Offshore Network Development Plan 2024

05 March 2024 - 'A Grid to Decarbonise Europe' - currENT Event, BXL/Hybrid

The ONDP Package

The Offshore Network Development Plan (ONDP) translates the MSs' non- binding offshore RES capacities into Network Infrastructure Equipment Needs and -Costs

Visit the <u>online ONDP- site</u> to find the reports, the interactive data platform, a film

The ONDP is part of the TYNDP

The ONDP 2024 is the first version of a new product

The ONDP answers a different question compared to the Scenario building / Needs Identification:

ONDP 2024:

"What does it take to integrate 496 GW of offshore RES into the 'DE 2040/ 2050- environment'?"

The optimizer is can only invest in offshore transmission infrastructure connecting RES. All other parameters remain locked in this first edition.

Implications on the onshore systems will be part of the TYNDP24 IoSN process.

a) Scenarios / b) Needs Identification
"a) How could the European Energy System look like in the environment "Distrib. Energy" in 2040 / 2050? – and
b) where could the system be more economically efficient?"

The optimizer can invest in

a) generation, infrastructure, DSR, flexibility measures etc. All-inone optimization starting from candidate links without capacity.
b) infrastructure, peaking units, storage – from list of candidate projects. Offshore hybrids so far not part of the identification process

...some simplifications had to be made to deliver on time:

- Usage of the TYNDP22 model, mounting MSs' offshore RES on it.
- No economic evaluation / adjustment of the overall production portfolio.
- Linear expansion of the demand by arbitrary increase of 8% across *all Europe* to better represent electrification.

Energy production - TYNDP 2022

Ambitious development of renewables across Europe

Figure 24: Capacity mix for EU27 (including prosumer PV, hybrid and dedicated RES for electrolysis)

Find the details of the TYNDP22 Scenarios here

TYNDP 2022

Scenario Building

The ONDP in four steps

Live DEMO of Vizualisation Tool

Schematic Visualisation:

* 2030 for 2040 2040 for 2050 ** minimize TOTEX

*** check plausibility and adjust

The TYNDP22 model and Distributed Energy Scenario was used Investigations focused on offshore infrastructure only. Onshore to follow

Need for Speed...for Generation and Transmission

Offshore RES Generation capacity [GW]

Today's offshore RES is only 7% of offshore RES foreseen in 2050

Annual installations of offshore RES and Infrastructure need to accelerate significantly => requires to be **9 times faster** than during the last decade!

...BUT: average speed last 10 years was

Live DEMO of Vizualisation Tool

Need for Speed...for Generation and Transmission

Offshore RES Generation capacity [GW]

Today's offshore RES is only 7% of offshore RES foreseen in 2050

Annual installations of offshore RES and Infrastructure need to accelerate significantly => requires to be **9 times faster** than during the last decade!

To translate offshore RES capacities into Network Infrastructure Equipment Needs and –Costs, about half has been tested to be connected as via hybrid infra

...BUT: average speed last 10 years was

Live DEMO of Vizualisation Tool

Results: Offshore Transmission Infrastructure Needs

Offshore Transmission Infrastructure [GW]

Most offshore RES is expected to be connected via radial connections

The supply chain will be crucial for delivering the needed infrastructure in time

Need to balance the rapid deployment of offshore grid infrastructure with the imperative to preserve and restore our marine environment.

Hybrid Project - What is it?

Common terminology on- and offshore => same legislation applies

entso

The term

"offshore hybrid project"

refers specifically to the **transmission infrastructure** connecting two countries (or bidding zones) and connecting the OWF to shore. <u>Generation assets are out of scope.</u>

(also called "dual purpose project" or "hybrid interconnector")

<u>"Multi-purpose":</u> additionally crossing energy sectors

Find various aspects about this category in our 6 position papers here

Up to 1 out of 7 GW will be connected via Offshore Hybrid Corridors

The future European offshore transmission system will be a combination of radial offshore RES connections, classical point-topoint interconnections, offshore hybrid projects combining both functions and multipurpose solutions integrating energy sectors

Hybrid corridors will progressively grow to link to up to 14% of offshore RES in 2050

Corridors identified by the ONDP study

- ---• Potential corridors identified by the ONDP study
 - ----• Existing and planned hybrid and radial links

Benefits and challenges of offshore corridor development

Energy Security Increase

Resulting from cross-border interconnections and increased redundancy

Price-convergence

Hybrid corridors would contribute to reduce price difference between market nodes

Better utilisation of offshore RES

Hybrid corridors reduce green energy surplus and help to avoid up to 5 to 8 Mton CO₂ annually

e.g. compli incident m network co Open No exp of HVD Offshore R is at risk in cas

System risk

e.g. comply with reference incident measures as stated in network codes and guidelines

Operational challenges

No experience yet with operation of HVDC systems.

Offshore RES development

is at risk in case coordination across multiple actors fails - complex coordination is decisive

& General challenges with

- Infrastructure supply chain (incl. workforce)
- Ports availability
- Environmental impact
- Flexibility

The Shopping List is long...

Credit mages top and bottom left: TenneT NL Credit Image bottom right: Hitachi Energy

* low-cost assumption

ELECTRIFYING EUROPE

2040/2050 Offshore Infrastructure - with/ without HVDC-circuit breaker ... Example Northern Seas

Without DC-breaker

Selected corridors*

With DC-breaker	Without DC-breaker
21.5 GW 4,300 / 21,000 km 148 bn€	7.5 GW 2,200 / 19,000 km 148 bn€
2031-2040	
2041-2050	
8.5 GW 1,900 / 8,000 km 59 bn€	3.0 GW 1,800 / 8,000 km 57 bn€

- DC Circuit breaker is not yet commercially attractive

- Without it, converter stations + AC substation instead

- DC Circuit breaker facilitates three times higher cross-border connection capacity at similar costs

*All costs refer to low-cost assumptions

The Mystery of the DC breaker

Why is it a game-changer?

Due to triple costs per additional link between nodes, less links are identified.

For NSOG this resulted in => rather similar costs, but 3 times less capacity to exchange electricity across borders.

Adding a 2 GW link between two offshore nodes means...

(Low-cost-assumption)

entso₍₎ 15

The Mystery of the DC breaker

Why is it a game-changer?

Due to triple costs per additional link between nodes, less links are identified.

For NSOG this resulted in => rather similar costs, but 3 times less capacity to exchange electricity across borders.

TYNDP22 identified 88 GW cross border capac	ity
for entire Europe. ONDP identified for	
=>All SBs either 16 % (without)	
or 50 % (with) of that.	
=>NS either 12% (without)	
or 34% (with) of that.	
entsoe	16

Next Steps

- Online Survey
 - -> YOUR opinion on the ONDP by 22 March
 - -> Recommended improvements
- In ENTSO-E we'll now integrate the ONDP into the TYNDP 2024
- TYNDP 2024 release incl. onshore reinforcements in autumn 2024
- WATCH also our <u>Public ONDP-Webinar</u> on YOUTUBE!

Thank you!

Antje Orths Convenor ENTSO-E ONDP Central Group <u>ano@energinet.dk</u>

TYNDP 20

Offshore Network Development Plans
European offshore
network transmission
infrastructure needs

Pan-European summary January 2024

EU Grid Action Plan

06 March 2024

Eric Lecomte, DG Energy Research, Innovation, Competitiveness, Digitalisation

Importance of electricity grids

€584bn investment by 2030!

Capacity expansion (cables & substations), modernisation (40%) and smartening

> Digitalising the Energy

Sector Action

Plan 2022

Commissio

Transmission grids

- Transport of renewables across Europe:
 - Cross-border capacity (PCIs)
 - ✓ x2 by 2030
 - ✓ ↓ Annual €9M generation costs by 2040
 - \circ Offshore ~317 GW
 - Industry electrification
 - Between distribution areas

Distribution grids

- ~70% new renewables (1,000 GW by 2030)
- 40M electric vehicles by 2030 (400 to 1000 GW)
- Heat pumps deployment rate x2
- Smart grids
 - Digitalisation -
 - Flexibility
 - Prosumer

First PCI/PMI list: Electricity C(2023)7930 - 28nov2023

PCI (Project of Common Interest)

85 electricity PCIs, incl: 12 related to storage, 12 offshore, 5 smart grids

<u>PMI (Project of Mutual Interest)</u>

10 Projects: electricity interconnections with UK, Western Balkans, North African countries

EU Grid Action Plan

Accelerating PCIs implementation

Network planning

Regulatory incentives

HLGs reinforced monitoring, ministerials

COM to assess funding needs (CEF-Energy)

ENTSO-E to improve TYNDP

EU DSO Entity to support DSOs COM guidance on anticipatory investments

COM guidance on offshore cost sharing

European Commission

ENTSO-E and EU DSO Entity to enhance grid capacity transparency

ENTSO-E and EU DSO to promote uptake of smart grids and innovative tech

ACER to recommend best practices on OPEX+CAPEX in tariff reports COM –through Investors Dialogue– to address financing obstacles

COM to increase visibility on funding for distribution (ERDF, CF, RRF)

European Commission

MSs to use Emergency Reg + RED for grids

COM update ENV guidance for grids

National Competent Authorities platform

Pact for *He* Engagement

ENTSO-E, EU DSO and tech providers to develop standard specifications

Common tech requirements for connection of generation / demand

Net Zero Industry Act: manufacturing plants

European Commission

Thank you

Strategic Energy Technology- SET Plan

Implementation Working Group (IWG) on Sustainable and Efficient Energy use in Industry

ERIC LECOMTE

04/03/2024

Advancing Industrial Decarbonisation by assessing the future use of REnewable energies in industrial processeS

- Assessment of industrial technology pathways to C-neutrality
- Quantification of **future energy and feedstock needs**, and CO2 captured

- Geographical mapping of facilities
- Mapping of the needs at facility and NUTS3 levels

6 sectors and 16 products in scope

#SETPlan

SECTOR	PRODUCT	
Steel	Primary and secondary steel Excl. steel finishing sites	
Fertiliser	Ammonia, urea, nitric acid	
Chemical	Olefins, polymers and organic synthesis Excl. other basic chemicals and downstream products	
Glass	Flat, container, fibre glass	
Cement	Portland Cement II, LC3	
Refinery	Light liquid fuel (63,8% of product out of crude oil) Excl. naphtha, heavy fuel, other	

Source: Port of Antwerp and Bruges

sector results **STEEL**

- AIDRES EU mix primary steel production routes¹.
 - Hydrogen direct reduced Iron (H2-DRI): 59%
 - Carbon capture based routes: 36%
 - Other technologies e.g. Molten Oxyde Electrolysis (MOE): 5%

¹Sources:

https://www.eurofer.eu/assets/Uploads/EUROFER-Low-Carbon-Roadmap-Pathways-to-a-CO2-neutral-European-Steel-Industry.pdf https://www.estep.eu/assets/Uploads/D1.7-Decarbonisation-Pathways-2030-and-2050.pdf https://ea.blo.core.windows.net/assets/eb0c8ed-13665-4959-9740-187ceca189a8/Iron and Steel Technology Roadmap.pdf

The AIDRES project final report - Assessment and

geo-mapping of renewable energy demand for technological paths towards carbon neutrality of EU energy-intensive industries : <u>https://op.europa.eu/s/yZuw</u>

Database in SQL format:

https://data.jrc.ec.europa.eu/dataset/14914982-70a9-4d1d-a2fc-cdee4a1d833d.

Visualisation in the JRC's EIGL (Energy and Industry Geography Lab) <u>https://europa.eu/!kTr9xT</u>

Simplified version of the **database in EXCEL** format :

<u>https://energy.ec.europa.eu/publications/database-</u> advancing-industrial-decarbonisation-assessing-futureuse-renewable-energies-industrial en

SET Plan IWG – HVDC & DC technologies

LVDC Implementation Plan

Outline presentation

Content of the draft Implementation Plan

- 1. Why LVDC?
- 2. Benefits of LVDC
- 3. Status of LVDC / Examples
- 4. Challenges
- 5. Priorities and targets
- 6. Proposed activities

1. Why LVDC?

#SETPlan

Most applications are DC-based or DC-ready

- Renewable energy: Solar PV, Wind, ocean energy,
- **Storage**: electrical battery (stationary and E-Vehicles)
- Electronics: LED-lighting, IT/office equipment,
- Variable speed **motor drives** in: motors, robots, heat pumps, washing machines, dishwasher, vacuum cleaner ...

include DC-link in frequency converters: AC->DC->AC

• Resistive heating: stove, oven, water boiler

Sources: https://commons.wikimedia.org/wiki/File:Mennoki Wind Power station.jpg https://commons.wikimedia.org/wiki/File:Solarpark_Jännersdorf.jpg

https://commons.wikimedia.org/wiki/File:Battery-Pack-Leaf.jpg https://commons.wikimedia.org/wiki/File:Led_Lights_Panel.jpg

2. Benefits of DC

- Converters: Less copper and material, higher efficiency
- Simple integration of renewables & storage: higher self-consumption

- Cables: Less copper, higher efficiency (lower losses)
- Motors' braking energy recovery
- Peak power shaving lower connection capacity needs

Eric.Lecomte@ec.europa.eu

© European Union 2023

Reuse is authorised provided the source is acknowledged and the original meaning or message of the document are not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. The reuse policy of the European Commission documents is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OI L 330, 14.12.2011, p. 39). All images © European Inoin, unless otherwise stated.

Horizon Europe – Running projects

Horizon Europe - Closed topics - Title	Budget	Туре	Projects
HORIZON-CL5-2021-D3-01-02 - Laying down the basis for the demonstration of a Real Time Demonstrator of Multi- Vendor Multi-Terminal HVDC with Grid Forming Capability: Coordination action	1 M€ (1 pj)	CSA	READY4DC Getting ready for multi-vendor and multi- terminal DC technology Apr 2022 – Sep 2023
HORIZON-CL5-2021-D3-02-08: Electricity system reliability and resilience by design: HVDC-based systems and solutions	15 M€ (2 pj of 7-8 M€)	RIA	NEWGEN 7.6M€, Oct22-Sep26 New generation of HVDC insulation materials, cables and systems HVDC-WISE 6.6M€, Oct22-Mar26, HVDC-based grid architectures for reliable and resilient WIdeSprEad hybrid AC/DC transmission systems
HORIZON-CL5-2021-D3-02-10: Demonstration of advanced Power Electronics for application in the energy sector (<i>including HV and MV-HVDC</i>)	10 M€ (2 pj of 5 M€)	IA	AdvanSiC Advances in Cost-Effective HV SiC Power Devices for Europe's MV grids, 3.2M€, Jan23-Dec25 SiC4GRID (*) Next Gen Modular SIC-based Advanced Power Electronics Converters 3.8M€, Oct22-Mar26 FOR2ENSICS Future Oriented Renewable and Reliable Energy SIC Solutions, 4.4M€, Oct22-Sep26

Horizon Europe – Running projects

Horizon Europe - Closed topics - Title	Budget	Туре	Projects
HORIZON-CL5-2022-D3-01-09: Real Time Demonstrator of Multi-Vendor Multi-Terminal VSC-HVDC with Grid Forming Capability	55 M€ (topic)	IA	InterOPERA, (**) Enabling interoperability of multi-vendor HVDC grids, 50.7M€, Jan 2023 – Apr 2027
HORIZON-CL5-2023-D3-01-05: Critical technologies for the offshore wind farm of the Future	18 M€ (3pj of 6 M€)	RIA	 INF4INITY Integrated Designs for Future Floating Offshore Wind Farm Technology, 6M€, Jan 2024 -Dec 2027 MADE4WIND Innovative circular materials and design methods for the development of Floating Wind Turbine components for offshore Wind Farms of the future, 6M€, Dec 2023 - May 2027 FLOATFARM Developing the Next Generation of Environmentally-Friendly Floating Wind Farms with Innovative Technologies and Sustainable Solutions, 6M€, Jan 2024 - Dec 2027 TAILWIND Sustainable station-keeping systems for floating wind, 5M€, Jan 2024 - Dec 2027
HORIZON-CL5-2023-D3-01-11: Demonstration of DC powered data centres, buildings, industries and ports	18 M€ (2 pj 9 M€)	IA	SHIFT2DC SHIFT to Direct Current, 11.3M€, Dec 2023 - May 2027 DC-POWER Direct Current – Power flOws in megawatt-scale Energy gRids, 8.7M€, Jan2024 - Dec 2027
HORIZON-CL5-2023-D3-01-12: Development of MVDC, HVDC and High-Power Transmission systems and components for a resilient grid	22 M€ (2 pj of 11 M€)	IA	MISSION eMISsion-free HV and MV transmiSION switchgear for AC and DC, 10.4M€, Jan 2024 - Dec 2027 European

Horizon Europe – Running projects

Horizon Europe - Closed topics - Title	Budget	Туре	Projects
HORIZON-CL5-2022-D3-01-09: Real Time Demonstrator of Multi-Vendor Multi-Terminal VSC-HVDC with Grid Forming Capability	55 M€ (topic)	IA	InterOPERA, (**) Enabling interoperability of multi-vendor HVDC grids, 50.7M€, Jan 2023 – Apr 2027
HORIZON-CL5-2023-D3-01-05: Critical technologies for the offshore wind farm of the Future	18 M€ (3pj of 6 M€)	RIA	 INF4INITY Integrated Designs for Future Floating Offshore Wind Farm Technology, 6M€, Jan 2024 -Dec 2027 MADE4WIND Innovative circular materials and design methods for the development of Floating Wind Turbine components for offshore Wind Farms of the future, 6M€, Dec 2023 - May 2027 FLOATFARM Developing the Next Generation of Environmentally-Friendly Floating Wind Farms with Innovative Technologies and Sustainable Solutions, 6M€, Jan 2024 - Dec 2027 TAILWIND Sustainable station-keeping systems for floating wind, 5M€, Jan 2024 - Dec 2027
HORIZON-CL5-2023-D3-01-11: Demonstration of DC powered data centres, buildings, industries and ports	18 M€ (2 pj 9 M€)	IA	SHIFT2DC SHIFT to Direct Current, 11.3M€, Dec 2023 - May 2027 DC-POWER Direct Current – Power flOws in megawatt-scale Energy gRids, 8.7M€, Jan2024 - Dec 2027
HORIZON-CL5-2023-D3-01-12: Development of MVDC, HVDC and High-Power Transmission systems and components for a resilient grid	22 M€ (2 pj of 11 M€)	IA	MISSION eMISsion-free HV and MV transmiSION switchgear for AC and DC, 10.4M€, Jan 2024 - Dec 2027 European

Commissio

Horizon Europe - Closed topics

Horizon Europe - Open topics - Title	Budget	Туре	Projects
HORIZON-CL5-2024-D3-01-15: HVAC, HVDC and	16 M€		Open: 12 Sep 2023
High-Power cable systems (incl.	(3pj of	IA	DDL: 16 Jan 2024
superconducting)	5.5 M€)		

